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Purpose: Diffusion magnetic resonance imaging (MRI) in combination with functional MRI prom-

ises a whole new vista for scientists to investigate noninvasively the structural and functional con-

nectivity of the human brain—the human connectome, which had heretofore been out of reach. As

with other imaging modalities, diffusion MRI data are inherently noisy and its acquisition time-

consuming. Further, a faithful representation of the human connectome that can serve as a predic-

tive model requires a robust and accurate data-analytic pipeline. The focus of this paper is on one

of the key segments of this pipeline—in particular, the development of a sparse and optimal acqui-

sition (SOA) design for diffusion MRI multiple-shell acquisition and beyond.

Methods: The authors propose a novel optimality criterion for sparse multiple-shell acquisition and

quasimultiple-shell designs in diffusion MRI and a novel and effective semistochastic and moder-

ately greedy combinatorial search strategy with simulated annealing to locate the optimum design

or configuration. The goal of the optimality criteria is threefold: first, to maximize uniformity of the

diffusion measurements in each shell, which is equivalent to maximal incoherence in angular meas-

urements; second, to maximize coverage of the diffusion measurements around each radial line to

achieve maximal incoherence in radial measurements for multiple-shell acquisition; and finally, to

ensure maximum uniformity of diffusion measurement directions in the limiting case when all the

shells are coincidental as in the case of a single-shell acquisition. The approach taken in evaluating

the stability of various acquisition designs is based on the condition number and the A-optimal

measure of the design matrix.

Results: Even though the number of distinct configurations for a given set of diffusion gradient direc-

tions is very large in general—e.g., in the order of 10232 for a set of 144 diffusion gradient directions, the

proposed search strategy was found to be effective in finding the optimum configuration. It was found

that the square design is the most robust (i.e., with stable condition numbers and A-optimal measures

under varying experimental conditions) among many other possible designs of the same sample size.

Under the same performance evaluation, the square design was found to be more robust than the widely

used sampling schemes similar to that of 3D radial MRI and of diffusion spectrum imaging (DSI).

Conclusions: A novel optimality criterion for sparse multiple-shell acquisition and quasimultiple-

shell designs in diffusion MRI and an effective search strategy for finding the best configuration

have been developed. The results are very promising, interesting, and practical for diffusion MRI

acquisitions. VC 2012 American Association of Physicists in Medicine.

[http://dx.doi.org/10.1118/1.3700166]

Key words: sparse design, optimal acquisition, diffusion MRI, multiple-shell acquisition, 3D radial

MRI, moderately greedy combinatorial search, combinatorial optimization

I. INTRODUCTION

Diffusion magnetic resonance imaging (MRI),1–3 a noninva-

sive and nonionizing magnetic resonance imaging technique,

is one of the most exciting and promising imaging techni-

ques and is increasingly being used in basic neuroscience

research and clinical studies of neurological diseases.4–8 Dif-

fusion MRI in combination with functional MRI (Ref. 9)

promises a whole new vista for scientists to explore the

human brain from structural and functional connectivity to
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human cognition. Such an exploration in human inquiry had

heretofore been out of reach.

Diffusion MRI data are inherently noisy and its acquisi-

tion time-consuming. Hence, a faithful representation of the

human connectome10,11 that can serve as a predictive model

for scientists to make inferences and discoveries requires a

robust and accurate data-analytic pipeline12–17 from data ac-

quisition, data processing to data visualization, and data

reduction. Here, our focus will be on the sparse and optimal

acquisition (SOA) design for diffusion MRI, especially in

the context of multiple-shell acquisition.

Diffusion tensor imaging (DTI) (Ref. 3) is the most com-

monly used variant of diffusion MRI techniques18–25 in clini-

cal studies, and consequently, the acquisition design of DTI

has also been investigated extensively.26–31 However, these

investigations26–31 focused mainly on a very special acquisi-

tion, which is known as a single-shell acquisition in which

the diffusion gradient directions can be conceptualized as

vectors that are antipodally symmetric and are also distrib-

uted uniformly on some spherical shell because a single dif-

fusion weighting (also known as b-value) is employed in the

acquisition (without counting the nondiffusion weighted

measurements). With the emerging interests in compressive

sensing (CS) methodology in imaging sciences,32–34 the

question and problem of constructing a SOA design will

surely be of significant interest because CS unified the

notions of sparsity in signal representation and of incoher-

ence in sampling in a novel attempt to unravel the problem

of finding the sparsest signal under the condition of underde-

termined set of measurements. We should note that our goal

here is to construct a SOA design that is sparse and maximally

incoherent in sampling so as to achieve low coherent with

respect to the typical bases used in 3D reconstruction of diffu-

sion propagator, see e.g., Refs. 35–37. Maximum incoherence

in sampling is a desirable sampling strategy and is related to

uniformity of the diffusion gradient vectors (or measure-

ments) in angular sampling for a single-shell acquisition.

Even though we briefly touched on the issue of and a

simple solution to optimal ordering for multiple-shell

acquisitions in our recent work,31 we left the question

regarding the optimal placements of diffusion gradient

directions across and within spherical shells unaddressed

because of the inherent complexity of the problem of maxi-

mizing the incoherence for a given number of measurements

on these spherical shells, which is a combinatorial optimiza-

tion of substantial complexity due to enormous number of

distinct configurations, e.g., 1027 to more than 10232 for dif-

fusion MRI and 1046 642 for three-dimensional radial MRI,

see Appendix A. The focus of this work is to provide a

novel and practical solution to the problem of SOA design

in diffusion MRI.

Multiple-shell acquisition, which is not uncommon in

DTI studies, is increasingly being used in other diffusion

MRI techniques36,38 but the search for its optimality criterion

has been elusive. In this work, we propose a novel optimality

criterion for sparse multiple-shell and quasimultiple-shell ac-

quisition designs in diffusion MRI and an effective semisto-

chastic and moderately greedy combinatorial search strategy

with simulated annealing39 to locate the optimum design or

configuration.

Our proposed method determines the optimal sampling

pattern for multiple-shell acquisition or quasimultiple-shell

acquisitions through optimization of a cost function once the

required parameters, specifically the number of shells (or b-

values3 or q-values8,40) and the number of measurements in

each shell, are provided. The cost function directly incorpo-

rates the criteria to (1) maximize uniformity of the diffusion

measurements in each shell, which is equivalent to maximal

incoherence in angular measurements, (2) maximize cover-

age of the diffusion measurements around each radial line to

achieve maximal incoherence in radial measurements for

quasimultiple-shell acquisition, and finally (3) ensure maxi-

mum uniformity of diffusion measurement directions in the

limiting case when all the shells are coincidental as in the

case of a single-shell acquisition. The results are very exciting

and promising, and they showed that the search strategy is very

effective in finding the optimum configuration. Further, it was

found that the square design is the most robust (i.e., with stable

condition numbers and A-optimal measure across varying ex-

perimental conditions) among many other possible designs of

the same sample size. Note that the lower the A-optimal mea-

sure the lower the mean squared error of the model.41

II. THEORY

Suppose that we have the required parameters such as the

number of shells, denoted by K, and the number of measure-

ments in each shell, i.e., jth shell has nj number of measure-

ments so that the total number of measurements, denoted by

N, is given by N ¼
PK

i¼1 ni.

To construct a cost function that directly incorporates the

following criteria:

1. maximize uniformity of the diffusion measurements in

each shell;

2. maximize coverage of the diffusion measurements around

each radial line;

3. ensure maximum uniformity of diffusion measurement

directions in the limiting case when all the shells are coin-

cidental as in the case of a single-shell acquisition,

we will first deal with criterion #3 by having all N measure-

ments uniformly distributed on the upper hemisphere of unit

radius (or antipodally symmetric points on the whole

sphere). This strategy ensures sufficient angular coverage in

the case of multiple-shell or quasi-multiple-shell acquisitions

and maximum angular coverage in the limit when the shells

are coincidental as in the case of a single-shell acquisition.

Note that, criteria #2 and #3 would be incompatible if we

were to maximize coverage of the diffusion measurements

along rather than around each radial line. We should point

out that our operational meaning of a quasimultiple-shell ac-

quisition is similar to multiple-shell acquisition as described

above except that the points in each shell may be associated

with slightly different diffusion weightings from the nominal

weighting for that shell. Suppose we have three shells, with

nominal b-values of 500, 1000, and 1500 s=mm2, and each
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shell has 20 uniformly distributed measurements, a

quasimultiple-shell acquisition would be an acquisition in

which the 20 measurements of the first, the second, and the

last shells have b-values (in units of s=mm2) ranging from

250 to 750, 750 to 1250, and 1250 to 1750, respectively.

Such an approach in designing radial measurement will

ensure incoherent sampling radially while maintaining maxi-

mal angular incoherence. Next, we will develop a cost func-

tion that will identify specific points to be moved to various

shells so as to satisfy criteria #1 and #2 simultaneously.

To facilitate subsequent discussion, we will introduce a

convenient graphical representation as shown in Fig. 1 with

the assumptions that n1 � n2 � � � � � nK and that the first

row has m1 measurements, the second row has m2 measure-

ments, and so on such that N ¼
Pn1

i¼1 mi and

K ¼ m1 � m2 � � � � � mn1
. The computation of m’s can be

easily achieved through algorithmic approach by putting

ones in the jagged grid and summing the values across the

columns for each row. The points placed on the jagged grid

may be taken to be any permutation from a list of N original

points, fP1;…;PNg, and the permutated list of points are

denoted by PSk
with a single index, Sk, with k ranges from 1

to N. Hence, the sequence, fS1; S2; S3;…; SNg, is a permuta-

tion of the original sequence, f 1; 2; 3;…; Ng. Each point,

PSk
, is a unit vector. For convenience, we also use the same

symbol but with two indices, i.e., Pi j, to refer to the point

located at the ith row and the jth column in Fig. 1; here, the

assignment, denoted by the symbol  , is made from PSk
to

Pi j in a column-wise fashion, i.e., P11  PS1
, …,

Pn 11  PSn 1
, P12  PSn 1þ1

, and so on with the final assign-

ment given by PnK K  PSN
.

Due to the constraint and the important role of antipodal

symmetry in diffusion MRI, we will also introduce a simpli-

fying strategy by classifying points as real and their corre-

sponding antipodal points as virtual. If we have N real points

(on the upper hemisphere), denoted by unit vectors ri with

i ¼ 1;…;N, then the total electrostatic energy for the com-

plete configuration of 2N points of both real and virtual

points is given by:

u ¼ N
2
þ 2

XN�1

i¼1

XN

j¼iþ1

1

rij
þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

4� r2
ij

q
0
B@

1
CA (1)

with rij � ri � r j

�� ��. Note that Eq. (1) is expressed solely in

terms of real points. If we define Sðri; rjÞ � 1
rij
þ 1ffiffiffiffiffiffiffiffi

4�r2
ij

p , then

Sðri; rjÞ may be thought of as a reciprocal metric (or recipro-

cal distance measure) between two real points. Now, we are

ready to introduce the cost function, which can be express

concisely as:

U ¼

PK
j¼1

nj

2
þ 2

Xnj�1

h¼1

Xnj

i¼hþ1

SðPhj;PijÞ

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{/RðjÞ

�Enj

Enj|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
~/RðjÞ

0
BBBBBBBBBB@

1
CCCCCCCCCCA

Pn1

q¼1

mq

2
þ 2

Xmq�1

r¼1

Xmq

s¼rþ1

SðPqr;PqsÞ

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{/CðqÞ

�Emq

Emq|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
~/CðqÞ

0
BBBBBBBBBB@

1
CCCCCCCCCCA

(2)

The function /RðjÞ denotes the electrostatic energy of all the

points in the jth column. Similarly, /CðqÞ denotes the electro-

static energy of all the points in the qth row. Note that En is

the electrostatic energy of the most uniformly distributed anti-

podally symmetric point set with n number of real points.

Therefore, ~/RðjÞ (or ~/CðqÞ) is the relative difference between

/RðjÞ and Enj
(or between /CðqÞ and Emq

). Minimizing U is

equivalent to simultaneously minimizing the numerator and

maximizing the denominator of Eq. (2). Minimizing the nu-

merator is aimed at fulfilling criterion #1 while maximizing

the denominator is aimed at fulfilling criterion #2. The moti-

vation behind the use of relative difference in evaluating the

electrostatic energy is to facilitate comparison among configu-

rations of different sizes. For example, it allows us to deter-

mine whether a 5-point set is “more uniform” than a 7-point

set in a quantitative and comparable manner.

Minimizing U is a challenging combinatorial optimiza-

tion problem that requires rearrangement of points to achieve

lower U value. It can be shown that the number of distinct

configurations is N!, N! � n � ðn� 1Þ � � � 2 � 1 is the factorial

function, if the numbers of measurements in each row and

each column are distinct. For the special case when the grid

is rectangular with n rows and m columns (shells), the

FIG. 1. A jagged grid is used as a graphical representation to manage

multiple-shell design; each column of data points is a collection of points on

a spherical shell. Points in each row may be thought of as collections points

around a radial line.
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number of configuration is given by
ðm�nÞ!

m!n! . The number of

distinct configurations is astronomical for typical values of m
and n, which renders exhaustive search impractical. For

example, with m ¼ 8 and n ¼ 30, i.e., N ¼ 240, which is

typical in diffusion MRI applications, the number of distinct

configurations is in the order of 10431. Therefore, an effective

and efficient search strategy capable of finding the optimal

configuration within appropriate timeframe is imperative.

We will present a semistochastic and moderately greedy

algorithm with simulated annealing in Sec. II.A to solve this

interesting but challenging combinatorial problem whose so-

lution will shed new light on many areas of research beyond

diffusion MRI such as geosciences, imaging sciences, and

notably three-dimensional radial MRI, please refer to Appen-

dix A in which we showed how the proposed cost function

and search strategy can be adapted to solve the problem of

optimal view-ordering in three-dimensional radial MRI.

II.A. Semistochastic and moderately greedy
combinatorial search strategy

We propose a novel search strategy to seek the optimal

configuration. The algorithm is outlined below:

II.A.1. Semistochastic and moderately greedy
combinatorial search algorithm

Preliminary step. Given an ordered list of N number of

points, fP1;…;PNg, obtained from tabulated data or from

Refs. 31 and 42, we make a one-to-one correspondence

between fP1;…;PNg and f 1; 2; 3;…; Ng. It is assumed

that we also have the relevant information such as the num-

ber of shells, K, and the number of measurements in each

row and column, i.e., n1 � n2 � � � � � nK and

K ¼ m1 � m2 � � � � � mn1
. We find the maximum and

minimum values of U from 5000 random configurations. We

then set T, which is the effective temperature to be used in

our modified simulated annealing, to be five times the differ-

ence between these maximum and minimum values. The first

T will be denoted by T0.

Fill the jagged grid with a random permutation of

f 1; 2; 3;…; Ng column by column:

Step 1: Find the index j� for which ~/RðjÞ is maximum.

Step 2: Find the index q� for which ~/CðqÞ is minimum.

Step 3: If Pq� j� exists, we look for lower energy configu-

ration by swapping it with other points systematically in the

jagged grid. If the rearranged configuration leads to lower U,

exit and set the “flag” to 1. If none of the rearrangements

leads to lower U, then exit and set the flag to �1.

If Pq� j� does not exist, we suggest using a point within

q�th row and a point within j�th column and swap these

points with other points in the grid. Specifically, we look for

the point, Pq� r, that minimizes the following inner sum:

Xmq�

s¼1
s 6¼r

SðPq�r;Pq�sÞ;

which is equivalent to finding a point, Pq� r, that is furthest

away from those in the q�th row. Similarly, we may also

look for a point, Pi j� that maximizes the following inner

sum:

Xnj�

k¼1
k 6¼i

SðPij� ;Pkj� Þ;

which is equivalent to finding a point, Pi j� , that is closest to

those in the j�th column. Then, we can successively swap these

two points, Pq� r and Pi j� , with all other points in the grid to

search for a better configuration. If the rearranged configuration

leads to lower U, exit and set the flag to 1. If none of the rear-

rangements leads to lower U, then exit and set the flag to�1.

Note: Step 4a and Step 4b below are alternative strat-

egies considered in this paper but Step 4b is the strategy

of choice for its effectiveness in finding optimum

configuration.

Step 4a: If the flag is �1, two distinct points on the grid

will be randomly selected and swapped (or two pairs of

points may be randomly selected and swapped), if the rear-

ranged configuration is better than the current configuration

then we go back to Step 1; otherwise, we will perform the

same operation of (internal) randomization for another 500

or more times before exiting with a flag of �1. We should

note that internal randomization degrades efficiency but

improves the overall quality of the search.

Step 4b: If the flag is �1, we adopt the simulated anneal-

ing approach in which configurations with higher energy (or

cost function value) may still have the likelihood of being

accepted if the effective temperature is high.

First, two distinct points on the grid will be randomly

selected and swapped, if the rearranged configuration is bet-

ter than the current configuration then we set the flag to “1”

and go to Step 5; otherwise, we accept the new configuration

with probability

expð�ðUnew � UoldÞ=TÞ;
where Unew is the value of the cost function of the new con-

figuration and Uold is that of the old configuration.

Internally, we keep a counter to ensure that no more than

100N trials for each value of the effective temperature in

which the new configuration is accepted. If the value of the

counter reaches 100N, we reset the counter to zero and reduce

the effective temperature according to the simple formula:

Tnþ1 ¼ 0:9Tn;

where Tn is the current effective temperature and Tnþ1 is the

next effective temperature to be used in simulated annealing.

Note that Step 4b will be repeated until either we find a

new Unew that is truly lower than Uold and at which point we

set the flag to be 1 and move on to Step 5 or the number of

repetitions of Step 4b reaches a predefined number, which is

the maximum iteration allowed (e.g., we used 1 000 000 for

small N, say N< 300, and smaller value for large N), and the

flag will be set to “�1”.

Step 5: If the flag is 1 then repeat Steps 1–4. Otherwise,

exit the algorithm.

We should note that Steps 4a and 4b are two alternative

strategies and the search strategy that incorporates Step 4a is
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slightly greedier and more suitable for very large sample size,

say N> 1000, than that of the search strategy that incorporates

Step 4b. Based on our numerical testing, we found that the

search algorithm with Step 4b, which is based on simulated

annealing, is more effective in finding the optimum solution.

Finally, we will touch on some steps that could signifi-

cantly speed up the search. Since the distances between the

original spherical points are fixed, we should compute and

store the values of all the inverse distances, i.e., SðPi;PjÞ, in a

form of a lower triangular matrix, see Fig. 2. It should also be

clear by now that it is more efficient to consider rearrangement

of the sequence, fS1; S2; S3;…; SNg, in, PSk
, than to actually

rearrange or move the points on the grid. Therefore, the final

product from the search algorithm is the optimum configura-

tion, which is simply a grid with numbers rearranged.

II.B. Optimal ordering strategy

The key motivation behind the use of optimal ordering in

diffusion MRI measurements (or gradient directions) is due in

part to the desire of salvaging as much information as possible

from partially completed diffusion MRI scan in the event that

the scan has to be interrupted unexpectedly, e.g., see Refs. 29

and 30. Our recently proposed deterministic optimal ordering

strategy for the single-shell acquisition31 is immediately appli-

cable to the proposed multiple-shell acquisition because of

criterion #3. Here, we briefly outline the strategy of incorpo-

rating our previously proposed optimal ordering in this work.

Since the points are originally placed uniformly on the same

sphere, our recent deterministic optimal ordering method can

be applied to the point set to create a list of optimally ordered

point set, denoted by list #1, which is then fed into the semi-

stochastic and moderately greedy combinatorial search algo-

rithm proposed above. The final optimum multiple-shell

acquisition, denoted by list #2, can be written out as a text file

with points and their corresponding b-values or q-values listed

side by side. The points in list #2 is arranged in exactly the

same order as in list #1 but their corresponding b-values

retrieved from the optimum configuration (or the grid, the out-

put from the above search algorithm).

III. METHOD OF EVALUATION OF ACQUISITION
DESIGNS

The approach we take in evaluating the stability of vari-

ous acquisition designs is based on the condition number and

the A-optimal measure of the design matrix. The use of con-

dition number in the analysis of stability of linear inverse

problem is well known, see Refs. 28, 43, and 44. To con-

struct the design matrix, we adopt the basis functions pro-

posed in Ref. 37. There are several proposed reconstruction

techniques35–37 but the basis functions proposed in Ref. 37 is

better suited for the analysis of diffusion MR signals. We

have made a few modifications to the basis functions so that

the basis functions are real-valued and orthonormal.

In brief, the three-dimensional normalized q-space signal

can be expressed in terms of the modified version of the

orthonormal basis wave functions used in three-dimensional

harmonic oscillator in quantum mechanics37,45 as follows:

EðqÞ ¼
XNmax

N¼0

X
flþ2j¼Nþ2g
j�1; l�0

Xl

m¼�l

ajlmWjlmðu; qÞ (3)

with

Wjlmðu; qÞ ¼ Rjlðu; qÞ Ylmðh;/Þ;

Rjlðu; qÞ ¼
ffiffiffi
2
p
ð2puÞlþ

3
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðj� 1Þ !

Cðlþ jþ 1=2Þ

s
ql

exp �ð2puÞ2

2
q2

 !
L

lþ1=2
j�1 ðð2puÞ2q2Þ;

Ylmðh;/Þ ¼

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

2p
ðlþmÞ!
ðl�mÞ!

r
sinðm/ÞPjmjl ðcosðhÞÞ; �l � m � �1ffiffiffiffiffiffiffiffiffiffiffiffi

2lþ 1

4p

r
PlðcosðhÞÞ; m ¼ 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2lþ 1

2p
ðl�mÞ!
ðlþmÞ!

r
cosðm/ÞPm

l ðcosðhÞÞ; 1 � m � l:

8>>>>>>>><
>>>>>>>>:

Note that q ¼ qq̂, q̂ ¼ ½sinðhÞ cosð/Þ; sinðhÞ sinð/Þ;
cosðhÞ	T , Ll

n is the generalized Laguerre polynomial of order

n, Pm
l is the associated Legendre polynomial, and C is the

Gamma function. Note also that the second summation is

supposed to be evaluated for all even number l � 0 and inte-

ger j � 1 such that lþ 2j ¼ N þ 2. Further, the definition of

the real-valued spherical harmonic functions, Ylm, is consist-

ent with our previous work, see Ref. 16. Given a collection

of q-vectors (measurements), it is clear that Eq. (3) with

evaluation at different q-vectors can be formulated as a ma-

trix equation of the following form,

y ¼ Ub;

where the elements of the observation vector, y, are the q-

space signal, EðqÞ, measured at different q-vectors, and the

elements of b are the coefficients ajlm in a particular order;

this particular order also affects how the basis functions are

ordered in the design matrix, U. Finally, we would like to

remind the reader that the condition number of U is the ratio

of the largest to the smallest singular values while the A-

optimal measure is the matrix trace of the inverse of the

moment matrix, i.e., trððUTUÞ�1Þ.
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IV. RESULTS

IV.A. Illustrative example

We implemented the above cost function and the pro-

posed search strategy in Java on a machine with an IntelVR

CoreTM i7 CPU at 1.73 GHz. We should note that the best

electrostatic energy values from a single-shell configuration

with different sample sizes will be needed to test our pro-

posed approach. However, we have made available these

values on the web. The first 365 configurations were itera-

tively optimized by using the deterministically generated

antipodally symmetric point set42 as the initial solution. The

resultant electrostatic energy values have subsequently been

tabulated and are available through the web, see the Ac-

knowledgment for the URL. Electrostatic values for sample

size beyond 365 are currently computed approximately from

the deterministic point set. Eventually, more values beyond

the first 365 will be based on point set derived from itera-

tively optimization.

We would like to introduce a simple and practical exam-

ple to illustrate the feasibility of our approach and some im-

portant features in the results that are universal across

different sample sizes. In this example, we begin with a sim-

ple 12 � 12 grid and generated 50 000 independent trials by

filling up the grid with any random permutation drawn from

(1, 2, …, 144); each number refers to the location of a point

in a list of 144 iteratively optimized points generated, tabu-

lated, and stored as a text file. We should mention that the

number of distinct configurations is astronomically large and

it is in the order of 10232; this number is greater than the

number of atoms in the observable universe, which is in the

order of 1080. To depend on exhaustive search to find the op-

timum configuration is to wait for eternity; it would still take

us 10201 millennia if we could exhaustively search 1020 con-

figurations in one second.

The distribution of the electrostatic energy of these random

configurations is shown as the red histogram in Fig. 3. The

proposed method (using Step 4a and with 500 internal ran-

domization) was applied to these configurations in an attempt

to minimize the electrostatic energy. The blue histogram is

the resultant distribution. Please refer to the insets of Figure 3

to contrast and compare these two different histograms more

closely. The lowest cost function value was 0.00369.

Separately and independently, we performed only one

single trial using the proposed method with Step 4b (i.e.,

simulated annealing) and found that the lowest cost function

value to be 0.00297. However, this single trial took approxi-

mately the same amount of time in execution, which was

about 222 min 53 s, as compared to the 50 000 trials using

the other alternative approach (i.e. with Step 4a). Even

though the computational cost is higher, we believe the pro-

posed method with the incorporation of simulated annealing

approach in Step 4 is more effective in finding a more opti-

mal configuration.

In what follows, we will present the point set from the

most optimum configuration in two distinct perspectives.

First, the points in the same column are color-coded simi-

larly and points in different columns have distinct hues, see

Fig. 4. It is clear that there is no sign of any cluster of points

with the same hue. We should remind the reader that the

points of the same color are on the same spherical shell and,

therefore, should be as far apart from each other as possible

to achieve maximal angular incoherence. Finally, the points

in the same row are color-coded similarly and points in dif-

ferent rows have distinct hues, see Fig. 5. It is clear that we

should expect to see 12 clusters of points with points in each

cluster having the same hue. Again, we remind the reader

that the points of the same color are, in this case, to be

moved to distinct spherical sphere to achieve sufficient radial

coverage or radial incoherence. This second perspective is

the most stringent test of the efficacy of the cost function

and of the search strategy because any discrepancy in the

cluster can be easily detected by visual inspection.

Another way of inspection that is more convenient for

large sample size is to investigate the variability of the val-

ues of /RðjÞ for all the columns and /CðqÞ for all the rows

when the grid is rectangular, or of ~/RðjÞ and ~/CðqÞ for

FIG. 3. 50 000 random permutations were generated to fill the 12� 12 grid.

The initial cost function values of these 50 000 samples are shown in the his-

togram that is color-coded in red. The histogram of the final cost function

values of these 50 000 samples is shown in blue. Inset shows the magnified

version of these two histograms.

FIG. 2. Computation of the cost function is greatly simplified by the use of

the metric function S between two “real” points, which is specifically

designed to deal with point set that is endowed with antipodal symmetry.

The lower triangular matrix shown above is used to keep the values of S.
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jagged grid; we used this approach in another example in

Appendix A.

IV.B. Evaluation of acquisition designs

For simplicity, the number of measurements was chosen

to 81 to ensure that a square grid of 9� 9 was one of the 18

designs considered in this investigation, see Fig. 6. We

should note that the number of possible designs is equal to

the unrestricted partitions of the integer 81, which turns out

to be 18 004 327, see Ref. 46.

To construct the design matrix and evaluate its condition

number for different experimental conditions, we have to

have the following information:

1. A collection of measurement vectors, q’s. The q-values

are shown in Fig. 6. In each design shown in Fig. 6, the

orientation information of the measurement vectors was

obtained by the method proposed in Sec. II.

2. The value of u in Eq. (3). The inherent advantage of the

basis function proposed by Özarslan et al.37 is that u can

be associated with the Einstein relation, i.e., u ¼
ffiffiffiffiffiffiffiffiffiffi
2DD
p

,

where D is the diffusion coefficient and D is the diffusion

time. Due to heterogeneity of diffusivity in the human

brain, it is important to investigate the stability of the ac-

quisition design, i.e., the condition number of the design

matrix under two very distinct values of diffusivity. Here,

the two different values of the diffusion coefficient were

chosen, the first one is close to the observed value of free

diffusion in the human brain, which is 2.1� 10�3 mm2=s

and the other is close to very slow diffusion (2.1� 10�5

mm2=s) as in the case of hindered diffusion.

FIG. 5. The clusters seen here are generated from the example of a 12� 12

grid. Each row contains points with the same color, and these points are

designed to be close together in a form of a cluster so that, when the points

are projected to different shells, we would have fulfilled the criterion #2,

which is to provide the maximum coverage around each radial line. The

problem of the boundary effect in which there might be two neighboring

points with distinct colors but are moved to some common shell will not be

an issue here because of criterion #1.

FIG. 6. A collection of 18 acquisition designs and the corresponding matrix

condition numbers. The design matrices were constructed from the three-

dimensional basis functions with u¼ 0.00827, which in turn depends on D
and D. Here, the diffusivity is chosen to be close to free diffusion of water

in the brain. For example, design #8 has (9,18,27,27) points in the (1st, 2nd,

3rd, 4th) shells, respectively. This design has matrix condition number of

38.8 and A-optimal measure of 2.0� 107. Further, the q-value at the first

shell is 25.2 mm�1. Design #18 is the square acquisition design.

FIG. 4. The points are generated from the example of a 12� 12 grid. Every

point in the same shell has the same color and each shell is assigned a dis-

tinct color and these colors are shown on the right. It can be seen that each

set of points with the same color is nearly uniformly distributed on the

sphere, which is related to the goal of criterion #1.
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3. The value of Nmax was chosen to be 4, which yields

exactly 22 coefficients in the series expansion in Eq. (3).

With the relevant parameters set to the chosen values, we

evaluated the condition number and the A-optimal measure

associated with each design shown in Fig. 6 (fast diffusion)

and Fig. 7 (slow diffusion). It is clear from the results that

any design closer to the square one has a lower combined A-

optimal measure and design #18 (the square design) is has

the lowest combined A-optimal measure. The results in Figs.

6 and 7 show that the condition numbers of designs #17 and

#18 are less variable than other designs. We also investi-

gated the behavior of the condition number of the design ma-

trix of design #18 as a function of the diffusion time with

diffusivity fixed at free diffusion, see Fig. 8. It is interesting

to note that there are two minima in Fig. 8 but the minimum

indicated at 16.32 ms is the one that is more practical for dif-

fusion MRI since the diffusion time has to be much greater

than the width of the diffusion gradient pulse. We would like

to point out that scaling the diffusion coefficient up or down

will increase the condition number of the design matrix if

the diffusion time is fixed at 16.32 ms. Finally, we investi-

gated the condition number of two design matrices derived

from the radial scheme, i.e., nine uniformly distributed q-

vectors on each shell and the q-values used were obtained

from Fig. 6, and the DSI-like sampling scheme.18 The condi-

tion numbers for the radial scheme were 2.5� 1018 and

5.9� 1016 for both cases of fast diffusion and slow diffusion,

respectively. The values of the A-optimal measure for the ra-

dial scheme were 2.1� 1023 and 1.4� 1024 for both cases of

fast diffusion and slow diffusion, respectively. The condition

numbers for the DSI scheme were 3� 1015 for the case of

fast diffusion and 69.35 for the case of slow diffusion. The

values of the A-optimal measure for the DSI scheme were

7� 1030 for the case of fast diffusion and 7� 109 for the

case of slow diffusion. Both of these commonly used sam-

pling schemes, DSI and radial, have a much higher com-

bined value of A-optimal measure than many of the designs

considered in Fig. 6. The DSI sampling scheme can be

visualized as integral lattice points that are within and on

some radius of integral value, which is associated with the

maximum q-value. We obtained 76 lattice points with inte-

gral radius of 3 and added five more repeated measurements

at the center of q-space to ensure the total number of sam-

pling points is exactly the same as other designs considered

in this work.

Finally, we note that the time taken by the proposed

search strategy to find the square design (design #18) was

about 18 min.

V. DISCUSSION

We have been grappling with the problem of the SOA

design for a multiple-shell acquisition in diffusion MRI for

awhile without any progress until we treaded to other terri-

tory to address the question on the optimal view-ordering in

three-dimensional radial MRI. Chronologically, the solution

to the three-dimensional radial MRI was found first and that

of diffusion MRI later. Due to our continued interest and

research effort in diffusion MRI, we have decided to present

our finding in the context of diffusion MRI and made only a

brief mention, in a form of an appendix, on how our pro-

posed approach can be adapted to solving optimal view-

ordering in three-dimensional radial MRI. However, we

should point out that the radial scheme is less optimal than

the proposed design, notably the square design, design #18

in Fig. 6.

The main objective of this work is to show the simplicity

and intuitiveness of our optimality criteria for sparse

FIG. 7. The same collection of 18 acquisition designs as in Fig. 6 but the

design matrices were now constructed from the basis functions with

u¼ 0.000827. Here, the value of the diffusivity was chosen to be low similar

to the case of hindered diffusion.

FIG. 8. The condition number of the design matrix of design #18 as a func-

tion of the diffusion time.
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multiple-shell and quasimultiple-shell acquisitions in diffu-

sion MRI and to share with the reader a novel search algo-

rithm, which is based on the notion of moderate greediness,

a term borrowed from social science. Incorporation of simu-

lated annealing in Step 4, specifically Step 4b, of the pro-

posed search algorithm makes the search more effective but

at a higher computational cost. Simulated annealing, with its

distinctive feature of being able to explore larger number of

slightly less optimal configurations (with respect to a partic-

ular level of effective temperature) at higher effective tem-

perature, and fewer and fewer of those suboptimal

configurations as the effective temperature decreases, may

be thought of as measured sacrifice to achieve coherence in

socioeconomic terms. Note that the apparent coherence here

in angularity will disappear once the points are moved to dif-

ferent shells so as to achieve better radial incoherence. Even

better radial incoherence can be achieved with

quasimultiple-shell design. We believe angular and radial

incoherence in sampling will play an important role in diffu-

sion MRI as the number of compressive sensing applications

to diffusion MRI increases.47

The results are very promising, interesting, and practical

for diffusion MRI acquisitions. It is interesting to note that

the square design turns out to be better in terms of lower

combined A-optimal measures than all the designs consid-

ered in this study and much better than the commonly used

radial design, which is similar to the sampling scheme of

three-dimensional radial MRI, and the DSI scheme. The key

findings are that (1) the multiple-shell design similar to

design #18 is better than the current paradigm of sampling

on a single shell and (2) this particular multiple-shell design

is also better than the multiple-shell design obtained from

the radial scheme. Beyond the confine of diffusion MRI, it is

very interesting to point out the following fact, which is that

we managed to find an optimum configuration for a realistic

example within a realistic timeframe even though the num-

ber of distinct configurations is astronomically large. This

particular finding is most encouraging and exciting from the

point of view of computational science and engineering.

Finally, we would like to mention that the proposed

approach may be of relevance to other applications such as

geosciences (network design of underground seismometers),

geospatial intelligence (the design of multiple satellite con-

stellations48), and last but not least, other biomedical imag-

ing modalities.
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APPENDIX A: APPLICATION OF THE PROPOSED
APPROACH TO FINDING OPTIMAL VIEW-ORDERING
IN THREE-DIMENSIONAL RADIAL MRI

3D MR data are most often acquired with multiple read-

out windows. The inconsistency among readout windows is

usually due to subject motion and variation in spin states.

This inconsistency leads to image artifacts in the final recon-

structed 3D volume. The nature and the magnitude or sever-

ity of the artifact are determined by the k-space trajectory

and the order in which the views are acquired. The effects of

view ordering have been extensively studied in 2D and 3D

Cartesian MRI and 2D radial MRI.49–54 Most existing tech-

niques, aim to isolate signal variations for a single source

(e.g. T2 decay) or along a single time dimension.

Unfortunately, the design of view ordering schemes in

multiple-dimensions and=or for 3D trajectories is nontrivial.

Even though 3D radial MRI (Ref. 55) is increasingly common

in clinical and research studies such as MR angiography, so-

dium MRI, and musculoskeletal MRI,53,56–60 the lack of an in-

tuitive optimality criterion for designing view ordering has

led to the use of various heuristic ordering schemes such as

the simple interleaving method, the pseudorandom bit-

reversal method,61 and the Golden Mean method.62 While

these schemes have been shown to produce images of good

quality, there is no guarantee that they are optimal.

In this appendix, we will present a novel view-ordering

optimality criterion for 3D radial MRI that builds upon the

proposed cost function and search strategy in the main text for

finding optimal view-ordering. Our proposed method deter-

mines view ordering through optimization of a cost function.

The cost function directly incorporates criteria to minimize

FIG. 9. (A) There are eight rows and each row of ten points is shown here as

points with the same hue on the translucent unit sphere. Points in different

rows have different hues. (B) There are ten columns and each column has

eight points. Each column of eight points is shown here as points with the

same hue on the translucent unit sphere. Again, points in different columns

have different hues.
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coherent aliasing from missing or corrupt data. The proposed

method can be illustrated with a simple example drawn from

3D radial fast spin echo (FSE) imaging technique [or rapid ac-

quisition with relaxation enhancement (RARE)].63

FSE has led to significant reduction in scan time with recent

developments on variable refocusing flip angles,64,65 which

have made it possible to acquire MR data with very long echo

trains. The reduction in scan time may also be used to improve

image resolution. However, the acquisition of multiple echoes

within the same excitation comes at a cost of enhanced image

artifacts such as blurring or ringing because of T2 decay. T2

decay introduces signal modulation in k-space. Therefore, dif-

ferent view-ordering strategies49–54 have been developed and

used in an effort to make the signal modulation as incoherent

as possible in k-space. Our view-ordering strategy consists of

two steps. The goal of the first step is to make the signal modu-

lation as incoherent as possible in each echo train and among

the same echoes across the trains. The goal of the second step

is to make the signal modulation as incoherent as possible in

different echo trains and in different echoes across the trains.

Suppose that we have a set of N points uniformly distrib-

uted on the surface of the unit sphere, e.g., Ref. 66, and N is

a composite number, e.g., N ¼ m� n. Here, we desire to

sample N points from the set of points P, and only need to

know the order in which to sample them, S. The view order-

ing, S, can be separated into multiple dimensions. For exam-

ple, S may be split into n echo trains, each m echoes long.

We can imagine placing points on an m� n grid with m
rows and n columns, which is a special case of our general

jagged grid in the main text.

The view ordering, S, can be determined by minimizing a

cost function. In this work, we have chosen to maximize the

distance between points using electrostatic potential energies

along the rows and columns. The criterion can be expressed

as follows:

UPR ¼
Xn

j¼1

Xm�1

i¼1

Xm

k¼iþ1

SðPij;PkjÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
/RðjÞ

0
BBBB@

1
CCCCA

þ
Xm

q¼1

Xn�1

r¼1

Xn

s¼rþ1

SðPqr;PqsÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
/CðqÞ

0
BBBB@

1
CCCCA (A1)

The function /RðjÞ denotes the electrostatic potential

energy of all the points in different rows but in the same jth
column. Similarly, /CðqÞ denotes the electrostatic potential

energy of all the points in different columns but in the same

qth row. Since the problem of optimal view-ordering can

be solved using rectangular grid rather than jagged grid, we

do not have to deal with point sets with different sizes

among the rows or among the columns. Therefore, the cost

function is simpler than the original cost function proposed

in the main text. More importantly, due to the goals of mak-

ing the signal modulation as incoherent as possible in each

echo train and among the same echoes across the trains
and in different echo trains and in different echoes across
the trains, we have to have the two terms added as in Eq.

(A1) rather than in a form of a ratio as in the original cost

function Eq. (2).

Finally, the following modification should be introduced

to the search algorithm in the main text:

Preliminary step: similar to the proposed algorithm in the

main text.

Step 1: Find the index j� for which /RðjÞ is maximum.

Step 2: Find the index q� for which /CðqÞ is maximum.

Step 3: Look for lower energy configuration systemati-

cally by swapping Pi j and Pq� j� for all i 6¼ q� and j 6¼ j�. If

the rearranged configuration leads to lower UPR, exit and set

the flag to 1. If none of the rearrangements leads to lower,

we suggest using a point within q�th row and a point within

j�th column and swap these points with other points in the

grid. Specifically, we look for the point, Pq� r, that maximizes
the following inner sum:

Xm

s¼1
s 6¼r

SðPq�r;Pq�sÞ:

Similarly, we may also look for a point, Pi j� that maximizes
the following inner sum:Xn

k¼1
k 6¼i

SðPij� ;Pkj� Þ:

Then, we can successively swap each point of the two

points, Pq�r and Pi j�, with all other points in the grid to

search for a better configuration. If the rearranged configu-

ration leads to lower U, exit and set the flag to 1. If none of

the rearrangements leads to lower U, then exit and set the

flag to �1.

Steps 4 and 5: similar to the proposed algorithm shown in

the main text.

Example 1

It should be clear that the cost function and the search

strategy presented in this appendix and in the main text can

be immediately adapted to nonantipodally symmetric point

set. As an illustration, we will show visually convincing

results of finding optimum configuration of a rectangular

grid of 8� 10. In this case, there are 4:8� 10107 distinct con-

figurations. The lowest energy value of UPR with nonantipo-

dal electrostatic energy function, i.e., each occurrence of the

function SðPv;PwÞ in UPR is replaced by 1= Pv � Pwk k, was

found to be 468.331889. The best configuration we obtained

is shown in Fig. 9 in two different views.

Example 2

Ideally, we want the points in each column (or row) to be

as uniform as possible but the electrostatic energy in each

column or row will likely be higher than the gold standard

(or the analytically exact spiral66) point set of the same size.

By taking the ratio of the electrostatic energy of each column

(or row) to the electrostatic energy of the analytically exact

spiral point set of the same size and plotting the ratios of all

the columns (or rows), we can easily inspect the variability
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or lack thereof, which indirectly related to the uniformity, of

the columns (or rows). This method of evaluation and com-

parison will be used in this example.

The number of points (on the sphere) as deployed in a

typical 3D radial MR experiment is in the order of thou-

sands. Here, we will use a grid of (n¼ 128, m¼ 100), which

has 12 800 points and its corresponding number of distinct

configurations in 1046642. We will apply the method of eval-

uation mentioned above on our optimum point set (configu-

ration) and on the point set obtained by the commonly used

methods such as the pseudo-random bit-reversal method61

and the Golden Mean method,62 see Appendix B for a brief

description of the 2D bit-reversal method. Based on the

results shown in Fig. 10, it is encouraging to see that the

electrostatic energies of the proposed point set are less vari-

able (in row or in column) and lower than those of the 2D

bit-reversal method and the Golden Mean method. We also

provided a more geometric comparison regarding the variabil-

ity of the Voronoi areas and of the Voronoi circumferences of

our point set and the Golden Mean method, which is known

to be less uniform in distribution and hence higher variability

in the above geometric measures, see Fig. 11. Please refer to

Appendix C in which we show how we computed the average

area and circumference of the spherical cap to get a rough

approximation of the lower bound of the Voronoi circumfer-

ence and the average value of the Voronoi area.

APPENDIX B: 2D BIT-REVERSAL METHOD

For convenience, we include here a description of the 2D

bit-reversal method. We assume the procedure of bit-

reversal of an array of numbers is understood. Given a grid

of m by n and an array of ordered numbers from 0 to m� 1.

First, bit-reverse this array and place it in the first column.

Subsequently, the value of each component of the jth column

is equal to the corresponding component of the first column

with ((j� 1)m) added to it. Second, bit-reverse the array of

FIG. 10. (A) The ratios of the electrostatic energy of points in each row of the

2D bit-reversal method (in red or with the highest ratios), of the proposed

method (in blue or with the lowest ratios) and of the Golden Mean method (in

black or with the medium ratios) to that of the point set of the same size (100

points) generated from the analytically exact spiral scheme. (B) The ratios of

the electrostatic energy of points in each column of the 2D bit-reversal

method (in red or with the highest ratios), of the proposed method (in blue or

with the lowest ratios) and of the Golden Mean method (in black or with the

medium ratios) to that of the point set of the same size (128 points) generated

from the analytically exact spiral scheme.

FIG. 11. Box plots and basic statistics on the Voronoi areas (A) and circumferences (B) generated from the proposed method (analytically exact spiral scheme)

and the Golden Mean method.
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numbers in each row then, for each kth row, cyclically shift

the elements by k positions from right to left. The final grid

is the desired solution of the 2D bit-reversal method.

APPENDIX C: AREA AND CIRCUMFERENCE OF
A CIRCULAR CAP ON THE SPHERE

In this appendix, we present a simple expression of the

circumference of a circular cone as a function of its area,

which was used in Fig. 11. Our derivation is built upon our

previous work, i.e., page 839 of Ref. 15. The unnormalized

areal and circumferential measures for the case of the circu-

lar cone are given, respectively, by:

C ¼ 2p 1� 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2

p� �
and

K ¼ 2p r=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2

p� �
;

where r is the radius of the circular cone lying on the plane

that is perpendicular to the unit sphere and the center of the

cone is the point of contact between the plane and the unit

sphere. After some manipulation, it can be shown that:

K ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cð4p� CÞ

p
:

For example, if we assume that C ¼ 4p=12 800 then

K ¼ 0:111068. From the isoperimetric problems in calculus

of variations, we know that a circle is the closed plane curve

of a given length that encloses the largest area, and a circle is

also the closed plane curve of the minimum length that enclo-

ses a given area. In fact, similar extension can be made about

the surface area and the volume of the sphere, see e.g., page

224 of Ref. 67. Therefore, the circumference, K, represents

the minimum circumference and can serve as a lower bound

for evaluating the quality of the Voronoi regions.
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